PART |

Preliminaries

1

Data Structures and Algorithms

How many cities with more than 250,000 people lie within 500 miles of Dallas,
Texas? How many people in my company make over $100,000 per year? Can we
connect all of our telephone customers with less than 1,000 miles of cable? To
answer questions like these, it is not enough to have the necessary information. We
must organize that information in a way that allows us to find the answers in time
to satisfy our needs.

Representing information is fundamental to computer science. The primary
purpose of most computer programs is not to perform calculations, but to store and
retrieve information — usually as fast as possible. For this reason, the study of
data structures and the algorithms that manipulate them is at the heart of computer
science. And that is what this book is about — helping you to understand how to
structure information to support efficient processing.

This book has three primary goals. The first is to present the commonly used
data structures. These form a programmer’s basic data structure “toolkit.” For
many problems, some data structure in the toolkit provides a good solution.

The second goal is to introduce the idea of tradeoffs and reinforce the concept
that there are costs and benefits associated with every data structure. This is done
by describing, for each data structure, the amount of space and time required for
typical operations.

The third goal is to teach how to measure the effectiveness of a data structure or
algorithm. Only through such measurement can you determine which data structure
in your toolkit is most appropriate for a new problem. The techniques presented
also allow you to judge the merits of new data structures that you or others might
invent.

There are often many approaches to solving a problem. How do we choose
between them? At the heart of computer program design are two (sometimes con-
flicting) goals:

4 Chap. 1 Data Structures and Algorithms

1. To design an algorithm that is easy to understand, code, and debug.

2. To design an algorithm that makes efficient use of the computer’s resources.

Ideally, the resulting program is true to both of these goals. We might say that
such a program is “elegant.” While the algorithms and program code examples pre-
sented here attempt to be elegant in this sense, it is not the purpose of this book to
explicitly treat issues related to goal (1). These are primarily concerns of the disci-
pline of Software Engineering. Rather, this book is mostly about issues relating to
goal (2).

How do we measure efficiency? Chapter 3 describes a method for evaluating
the efficiency of an algorithm or computer program, called asymptotic analysis.
Asymptotic analysis also allows you to measure the inherent difficulty of a problem.
The remaining chapters use asymptotic analysis techniques for every algorithm
presented. This allows you to see how each algorithm compares to other algorithms
for solving the same problem in terms of its efficiency.

This first chapter sets the stage for what is to follow, by presenting some higher-
order issues related to the selection and use of data structures. We first examine the
process by which a designer selects a data structure appropriate to the task at hand.
We then consider the role of abstraction in program design. We briefly consider
the concept of a design pattern and see some examples. The chapter ends with an
exploration of the relationship between problems, algorithms, and programs.

1.1 A Philosophy of Data Structures

1.1.1 The Need for Data Structures

You might think that with ever more powerful computers, program efficiency is
becoming less important. After all, processor speed and memory size still seem to
double every couple of years. Won’t any efficiency problem we might have today
be solved by tomorrow’s hardware?

As we develop more powerful computers, our history so far has always been
to use additional computing power to tackle more complex problems, be it in the
form of more sophisticated user interfaces, bigger problem sizes, or new problems
previously deemed computationally infeasible. More complex problems demand
more computation, making the need for efficient programs even greater. Worse yet,
as tasks become more complex, they become less like our everyday experience.
Today’s computer scientists must be trained to have a thorough understanding of the
principles behind efficient program design, because their ordinary life experiences
often do not apply when designing computer programs.

Sec. 1.1 A Philosophy of Data Structures 5

In the most general sense, a data structure is any data representation and its
associated operations. Even an integer or floating point number stored on the com-
puter can be viewed as a simple data structure. More typically, a data structure is
meant to be an organization or structuring for a collection of data items. A sorted
list of integers stored in an array is an example of such a structuring.

Given sufficient space to store a collection of data items, it is always possible to
search for specified items within the collection, print or otherwise process the data
items in any desired order, or modify the value of any particular data item. Thus,
it is possible to perform all necessary operations on any data structure. However,
using the proper data structure can make the difference between a program running
in a few seconds and one requiring many days.

A solution is said to be efficient if it solves the problem within the required
resource constraints. Examples of resource constraints include the total space
available to store the data — possibly divided into separate main memory and disk
space constraints — and the time allowed to perform each subtask. A solution is
sometimes said to be efficient if it requires fewer resources than known alternatives,
regardless of whether it meets any particular requirements. The cost of a solution is
the amount of resources that the solution consumes. Most often, cost is measured
in terms of one key resource such as time, with the implied assumption that the
solution meets the other resource constraints.

It should go without saying that people write programs to solve problems. How-
ever, it is crucial to keep this truism in mind when selecting a data structure to solve
a particular problem. Only by first analyzing the problem to determine the perfor-
mance goals that must be achieved can there be any hope of selecting the right data
structure for the job. Poor program designers ignore this analysis step and apply a
data structure that they are familiar with but which is inappropriate to the problem.
The result is typically a slow program. Conversely, there is no sense in adopting
a complex representation to “improve” a program that can meet its performance
goals when implemented using a simpler design.

When selecting a data structure to solve a problem, you should follow these
steps.

1. Analyze your problem to determine the basic operations that must be sup-
ported. Examples of basic operations include inserting a data item into the
data structure, deleting a data item from the data structure, and finding a
specified data item.

2. Quantify the resource constraints for each operation.

3. Select the data structure that best meets these requirements.

6 Chap. 1 Data Structures and Algorithms

This three-step approach to selecting a data structure operationalizes a data-
centered view of the design process. The first concern is for the data and the op-
erations to be performed on them, the next concern is the representation for those
data, and the final concern is the implementation of that representation.

Resource constraints on certain key operations, such as search, inserting data
records, and deleting data records, normally drive the data structure selection pro-
cess. Many issues relating to the relative importance of these operations are ad-
dressed by the following three questions, which you should ask yourself whenever
you must choose a data structure:

e Are all data items inserted into the data structure at the beginning, or are
insertions interspersed with other operations?

e Can data items be deleted?

o Are all data items processed in some well-defined order, or is search for
specific data items allowed?

Typically, interspersing insertions with other operations, allowing deletion, and
supporting search for data items all require more complex representations.

1.1.2 Costs and Benefits

Each data structure has associated costs and benefits. In practice, it is hardly ever
true that one data structure is better than another for use in all situations. If one
data structure or algorithm is superior to another in all respects, the inferior one
will usually have long been forgotten. For nearly every data structure and algorithm
presented in this book, you will see examples of where it is the best choice. Some
of the examples might surprise you.

A data structure requires a certain amount of space for each data item it stores,
a certain amount of time to perform a single basic operation, and a certain amount
of programming effort. Each problem has constraints on available space and time.
Each solution to a problem makes use of the basic operations in some relative pro-
portion, and the data structure selection process must account for this. Only after a
careful analysis of your problem’s characteristics can you determine the best data
structure for the task.

Example 1.1 A bank must support many types of transactions with its
customers, but we will examine a simple model where customers wish to
open accounts, close accounts, and add money or withdraw money from
accounts. We can consider this problem at two distinct levels: (1) the re-
quirements for the physical infrastructure and workflow process that the

Sec. 1.1 A Philosophy of Data Structures

bank uses in its interactions with its customers, and (2) the requirements
for the database system that manages the accounts.

The typical customer opens and closes accounts far less often than he
or she accesses the account. Customers are willing to wait many minutes
while accounts are created or deleted but are typically not willing to wait
more than a brief time for individual account transactions such as a deposit
or withdrawal. These observations can be considered as informal specifica-
tions for the time constraints on the problem.

It is common practice for banks to provide two tiers of service. Hu-
man tellers or automated teller machines (ATMSs) support customer access
to account balances and updates such as deposits and withdrawals. Spe-
cial service representatives are typically provided (during restricted hours)
to handle opening and closing accounts. Teller and ATM transactions are
expected to take little time. Opening or closing an account can take much
longer (perhaps up to an hour from the customer’s perspective).

From a database perspective, we see that ATM transactions do not mod-
ify the database significantly. For simplicity, assume that if money is added
or removed, this transaction simply changes the value stored in an account
record. Adding a new account to the database is allowed to take several
minutes. Deleting an account need have no time constraint, because from
the customer’s point of view all that matters is that all the money be re-
turned (equivalent to a withdrawal). From the bank’s point of view, the
account record might be removed from the database system after business
hours, or at the end of the monthly account cycle.

When considering the choice of data structure to use in the database
system that manages customer accounts, we see that a data structure that
has little concern for the cost of deletion, but is highly efficient for search
and moderately efficient for insertion, should meet the resource constraints
imposed by this problem. Records are accessible by unique account number
(sometimes called an exact-match query). One data structure that meets
these requirements is the hash table described in Chapter 9.4. Hash tables
allow for extremely fast exact-match search. A record can be modified
quickly when the modification does not affect its space requirements. Hash
tables also support efficient insertion of new records. While deletions can
also be supported efficiently, too many deletions lead to some degradation
in performance for the remaining operations. However, the hash table can
be reorganized periodically to restore the system to peak efficiency. Such
reorganization can occur offline so as not to affect ATM transactions.

8 Chap. 1 Data Structures and Algorithms

Example 1.2 A company is developing a database system containing in-
formation about cities and towns in the United States. There are many
thousands of cities and towns, and the database program should allow users
to find information about a particular place by name (another example of
an exact-match query). Users should also be able to find all places that
match a particular value or range of values for attributes such as location or
population size. This is known as a range query.

A reasonable database system must answer queries quickly enough to
satisfy the patience of a typical user. For an exact-match query, a few sec-
onds is satisfactory. If the database is meant to support range queries that
can return many cities that match the query specification, the entire opera-
tion may be allowed to take longer, perhaps on the order of a minute. To
meet this requirement, it will be necessary to support operations that pro-
cess range queries efficiently by processing all cities in the range as a batch,
rather than as a series of operations on individual cities.

The hash table suggested in the previous example is inappropriate for
implementing our city database, because it cannot perform efficient range
queries. The B -tree of Section 10.5.1 supports large databases, insertion
and deletion of data records, and range queries. However, a simple linear in-
dex as described in Section 10.1 would be more appropriate if the database
is created once, and then never changed, such as an atlas distributed on a
CD-ROM.

1.2 Abstract Data Types and Data Structures

The previous section used the terms “data item” and “data structure” without prop-
erly defining them. This section presents terminology and motivates the design
process embodied in the three-step approach to selecting a data structure. This mo-
tivation stems from the need to manage the tremendous complexity of computer
programs.

A type is a collection of values. For example, the Boolean type consists of the
values true and false. The integers also form a type. An integer is a simple
type because its values contain no subparts. A bank account record will typically
contain several pieces of information such as name, address, account number, and
account balance. Such a record is an example of an aggregate type or composite
type. A data item is a piece of information or a record whose value is drawn from
atype. A data item is said to be a member of a type.

Sec. 1.2 Abstract Data Types and Data Structures 9

A data type is a type together with a collection of operations to manipulate
the type. For example, an integer variable is a member of the integer data type.
Addition is an example of an operation on the integer data type.

A distinction should be made between the logical concept of a data type and its
physical implementation in a computer program. For example, there are two tra-
ditional implementations for the list data type: the linked list and the array-based
list. The list data type can therefore be implemented using a linked list or an ar-
ray. Even the term “array” is ambiguous in that it can refer either to a data type
or an implementation. “Array” is commonly used in computer programming to
mean a contiguous block of memory locations, where each memory location stores
one fixed-length data item. By this meaning, an array is a physical data structure.
However, array can also mean a logical data type composed of a (typically ho-
mogeneous) collection of data items, with each data item identified by an index
number. It is possible to implement arrays in many different ways. For exam-
ple, Section 12.2 describes the data structure used to implement a sparse matrix, a
large two-dimensional array that stores only a relatively few non-zero values. This
implementation is quite different from the physical representation of an array as
contiguous memory locations.

An abstract data type (ADT) is the realization of a data type as a software
component. The interface of the ADT is defined in terms of a type and a set of
operations on that type. The behavior of each operation is determined by its inputs
and outputs. An ADT does not specify how the data type is implemented. These
implementation details are hidden from the user of the ADT and protected from
outside access, a concept referred to as encapsulation.

A data structure is the implementation for an ADT. In an object-oriented lan-
guage such as Java, an ADT and its implementation together make up a class.
Each operation associated with the ADT is implemented by a member function or
method. The variables that define the space required by a data item are referred
to as data members. An object is an instance of a class, that is, something that is
created and takes up storage during the execution of a computer program.

The term “data structure” often refers to data stored in a computer’s main mem-
ory. The related term file structure often refers to the organization of data on
peripheral storage, such as a disk drive or CD-ROM.

Example 1.3 The mathematical concept of an integer, along with opera-
tions that manipulate integers, form a data type. The Java int variable type
is a physical representation of the abstract integer. The int variable type,
along with the operations that act on an int variable, form an ADT. Un-

10 Chap. 1 Data Structures and Algorithms

fortunately, the int implementation is not completely true to the abstract
integer, as there are limitations on the range of values an int variable can
store. If these limitations prove unacceptable, then some other represen-
tation for the ADT “integer” must be devised, and a new implementation
must be used for the associated operations.

Example 1.4 An ADT for a list of integers might specify the following
operations:
e Insert a new integer at a particular position in the list.
Return true if the list is empty.
Reinitialize the list.
Return the number of integers currently in the list.
Delete the integer at a particular position in the list.

From this description, the input and output of each operation should be
clear, but the implementation for lists has not been specified.

One application that makes use of some ADT might use particular member
functions of that ADT more than a second application, or the two applications might
have different time requirements for the various operations. These differences in the
requirements of applications are the reason why a given ADT might be supported
by more than one implementation.

Example 1.5 Two popular implementations for large disk-based database
applications are hashing (Section 9.4) and the B™-tree (Section 10.5). Both
support efficient insertion and deletion of records, and both support exact-
match queries. However, hashing is more efficient than the B -tree for
exact-match queries. On the other hand, the BT-tree can perform range
queries efficiently, while hashing is hopelessly inefficient for range queries.
Thus, if the database application limits searches to exact-match queries,
hashing is preferred. On the other hand, if the application requires support
for range queries, the B -tree is preferred. Despite these performance is-
sues, both implementations solve versions of the same problem: updating
and searching a large collection of records.

The concept of an ADT can help us to focus on key issues even in non-com-ut-
ing applications.

Sec. 1.2 Abstract Data Types and Data Structures 11

Example 1.6 When operating a car, the primary activities are steering,
accelerating, and braking. On nearly all passenger cars, you steer by turn-
ing the steering wheel, accelerate by pushing the gas pedal, and brake by
pushing the brake pedal. This design for cars can be viewed as an ADT
with operations “steer,” “accelerate,” and “brake.” Two cars might imple-
ment these operations in radically different ways, say with different types
of engine, or front- versus rear-wheel drive. Yet, most drivers can oper-
ate many different cars because the ADT presents a uniform method of
operation that does not require the driver to understand the specifics of any
particular engine or drive design. These differences are deliberately hidden.

The concept of an ADT is one instance of an important principle that must be
understood by any successful computer scientist: managing complexity through
abstraction. A central theme of computer science is complexity and techniques
for handling it. Humans deal with complexity by assigning a label to an assembly
of objects or concepts and then manipulating the label in place of the assembly.
Cognitive psychologists call such a label a metaphor. A particular label might be
related to other pieces of information or other labels. This collection can in turn be
given a label, forming a hierarchy of concepts and labels. This hierarchy of labels
allows us to focus on important issues while ignoring unnecessary details.

Example 1.7 We apply the label “hard drive” to a collection of hardware
that manipulates data on a particular type of storage device, and we ap-
ply the label “CPU” to the hardware that controls execution of computer
instructions. These and other labels are gathered together under the label
“computer.” Because even small home computers have millions of compo-
nents, some form of abstraction is necessary to comprehend how a com-
puter operates.

Consider how you might go about the process of designing a complex computer
program that implements and manipulates an ADT. The ADT is implemented in
one part of the program by a particular data structure. While designing those parts
of the program that use the ADT, you can think in terms of operations on the data
type without concern for the data structure’s implementation. Without this ability
to simplify your thinking about a complex program, you would have no hope of
understanding or implementing it.

12 Chap. 1 Data Structures and Algorithms

Example 1.8 Consider the design for a relatively simple database system
stored on disk. Typically, records on disk in such a program are accessed
through a buffer pool (see Section 8.3) rather than directly. Variable length
records might use a memory manager (see Section 12.3) to find an appro-
priate location within the disk file to place the record. Multiple index struc-
tures (see Chapter 10) will typically be used to access records in various
ways. Thus, we have a chain of classes, each with its own responsibili-
ties and access privileges. A database query from a user is implemented
by searching an index structure. This index requests access to the record
by means of a request to the buffer pool. If a record is being inserted or
deleted, such a request goes through the memory manager, which in turn
interacts with the buffer pool to gain access to the disk file. A program such
as this is far too complex for nearly any human programmer to keep all of
the details in his or her head at once. The only way to design and imple-
ment such a program is through proper use of abstraction and metaphors.
In object-oriented programming, such abstraction is handled using classes.

Data types have both a logical and a physical form. The definition of the data
type in terms of an ADT is its logical form. The implementation of the data type as
a data structure is its physical form. Figure 1.1 illustrates this relationship between
logical and physical forms for data types. When you implement an ADT, you
are dealing with the physical form of the associated data type. When you use an
ADT elsewhere in your program, you are concerned with the associated data type’s
logical form. Some sections of this book focus on physical implementations for a
given data structure. Other sections use the logical ADT for the data type in the
context of a higher-level task.

Example 1.9 A particular Java environment might provide a library that
includes a list class. The logical form of the list is defined by the public
functions, their inputs, and their outputs that define the class. This might be
all that you know about the list class implementation, and this should be all
you need to know. Within the class, a variety of physical implementations
for lists is possible. Several are described in Section 4.1.

1.3 Design Patterns

At a higher level of abstraction than ADTs are abstractions for describing the design
of programs — that is, the interactions of objects and classes. Experienced software

Sec. 1.3 Design Patterns 13

Data Type
A.D-l-!;,:pe Data Items:
Logical Form

e Operations

Data Structure:
e Storage Space
e Subroutines

Data Items:
Physical Form

Figure 1.1 The relationship between data items, abstract data types, and data
structures. The ADT defines the logical form of the data type. The data structure
implements the physical form of the data type.

designers learn and reuse various techniques for combining software components.
Such techniques are sometimes referred to as design patterns.

A design pattern embodies and generalizes important design concepts for a
recurring problem. A primary goal of design patterns is to quickly transfer the
knowledge gained by expert designers to newer programmers. Another goal is to
allow for efficient communication between programmers. Its much easier to discuss
a design issue when you share a vocabulary relevant to the topic.

Specific design patterns emerge from the discovery that a particular design
problem appears repeatedly in many contexts. They are meant to solve real prob-
lems. Design patterns are a bit like generics: They describe the structure for a
design solution, with the details filled in for any given problem. Design patterns
are a bit like data structures: Each one provides costs and benefits, which implies
that tradeoffs are possible. Therefore, a given design pattern might have variations
on its application to match the various tradeoffs inherent in a given situation.

The rest of this section introduces a few simple design patterns that are used
later in the book.

1.3.1 Flyweight

The Flyweight design pattern is meant to solve the following problem. You have
an application with many objects. Some of these objects are identical in the in-
formation that they contain, and the role that they play. But they must be reached
from various places, and conceptually they really are distinct objects. Because so
much information is shared, we would like to take advantage of the opportunity to
reduce memory cost by sharing space. An example comes from representing the

14 Chap. 1 Data Structures and Algorithms

layout for a document. The letter “C” might reasonably be represented by an object
that describes that character’s strokes and bounding box. However, we don’t want
to create a separate “C” object everywhere in the document that a “C” appears.
The solution is to allocate a single copy of the shared representation for “C” ob-
ject. Then, every place in the document that needs a “C” in a given font, size, and
typeface will reference this single copy. The various instances of references to “C”
are called flyweights. A flyweight includes the reference to the shared information,
and might include additional information specific to that instance.

We could imagine describing the layout of text on a page by using a tree struc-
ture. The root of the tree is a node representing the page. The page has multiple
child nodes, one for each column. The column nodes have child nodes for each
row. And the rows have child nodes for each character. These representations for
characters are the flyweights. The flyweight includes the reference to the shared
shape information, and might contain additional information specific to that in-
stance. For example, each instance for “C” will contain a reference to the shared
information about strokes and shapes, and it might also contain the exact location
for that instance of the character on the page.

Flyweights are used in the implementation for the PR quadtree data structure
for storing collections of point objects, described in Section 13.3. In a PR quadtree,
we again have a tree with leaf nodes. Many of these leaf nodes (the ones that
represent empty areas) contain the same information. These identical nodes can be
implemented using the Flyweight design pattern for better memory efficiency.

1.3.2 Visitor

Given a tree of objects to describe a page layout, we might wish to perform some
activity on every node in the tree. Section 5.2 discusses tree traversal, which is the
process of visiting every node in the tree in a defined order. A simple example for
our text composition application might be to count the number of nodes in the tree
that represents the page. At another time, we might wish to print a listing of all the
nodes for debugging purposes.

We could write a separate traversal function for each such activity that we in-
tend to perform on the tree. A better approach would be to write a generic traversal
function, and pass in the activity to be performed at each node. This organization
constitutes the visitor design pattern. The visitor design pattern is used in Sec-
tions 5.2 (tree traversal) and 11.3 (graph traversal).

Sec. 1.3 Design Patterns 15

1.3.3 Composite

There are two fundamental approaches to dealing with the relationship between
a collection of actions and a hierarchy of object types. First consider the typical
procedural approach. Say we have a base class for page layout entities, with a
subclass hierarchy to define specific subtypes (page, columns, rows, figures, char-
acters, etc.). And say there are actions to be performed on a collection of such
objects (such as rendering the objects to the screen). The procedural design ap-
proach is for each action to be implemented as a method that takes as a parameter
a pointer to the base class type. Each such method will traverse through the collec-
tion of objects, visiting each object in turn. Each method contains something like a
case statement that defines the details of the action for each subclass in the collec-
tion (e.g., page, column, row, character). We can cut the code down some by using
the visitor design pattern so that we only need to write the traversal once, and then
write a visitor subroutine for each action that might be applied to the collection of
objects. But each such visitor subroutine must still contain logic for dealing with
each of the possible subclasses.

In our page composition application, there are only a few activities that we
would like to perform on the page representation. We might render the objects in
full detail. Or we might want a “rough draft” rendering that prints only the bound-
ing boxes of the objects. If we come up with a new activity to apply to the collection
of objects, we do not need to change any of the code that implements the existing
activities. But adding new activities won’t happen often for this application. In
contrast, there could be many object types, and we might frequently add new ob-
ject types to our implementation. Unfortunately, adding a new object type requires
that we modify each activity, and the subroutines implementing the activities get
rather long case statements to distinguish the behavior of the many subclasses.

An alternative design is to have each object subclass in the hierarchy embody
the action for each of the various activities that might be performed. Each subclass
will have code to perform each activity (such as full rendering or bounding box
rendering). Then, if we wish to apply the activity to the collection, we simply call
the first object in the collection and specify the action (as a method call on that
object). In the case of our page layout and its hierarchical collection of objects,
those objects that contain other objects (such as a row objects that contains letters)
will call the appropriate method for each child. If we want to add a new activity
with this organization, we have to change the code for every subclass. But this is
relatively rare for our text compositing application. In contrast, adding a new object
into the subclass hierarchy (which for this application is far more likely than adding
anew rendering function) is easy. Adding a new subclass does not require changing

16 Chap. 1 Data Structures and Algorithms

any of the existing subclasses. It merely requires that we define the behavior of each
activity that can be performed on that subclass.

This second design approach of burying the functional activity in the subclasses
is called the Composite design pattern. A detailed example for using the Composite
design pattern is presented in Section 5.3.1.

1.3.4 Strategy

Our final example of a design pattern lets us encapsulate and make interchangeable
a set of alternative actions that might be performed as part of some larger activity.
Again continuing our text compositing example, each output device that we wish
to render to will require its own function for doing the actual rendering. That is,
the objects will be broken down into constituent pixels or strokes, but the actual
mechanics of rendering a pixel or stroke will depend on the output device. We
don’t want to build this rendering functionality into the object subclasses. Instead,
we want to pass to the subroutine performing the rendering action a method or class
that does the appropriate rendering details for that output device. That is, we wish
to hand to the object the appropriate “strategy” for accomplishing the details of the
rendering task. Thus, we call this approach the Strategy design pattern.

The Strategy design pattern will be discussed further in Chapter 7. There, a
sorting function is given a class (called a comparator) that understands how to ex-
tract and compare the key values for records to be sorted. In this way, the sorting
function does not need to know any details of how its record type is implemented.

One of the biggest challenges to understanding design patterns is that many
of them appear to be pretty much the same. For example, you might be confused
about the difference between the composite pattern and the visitor pattern. The
distinction is that the composite design pattern is about whether to give control of
the traversal process to the nodes of the tree or to the tree itself. Both approaches
can make use of the visitor design pattern to avoid rewriting the traversal function
many times, by encapsulating the activity performed at each node.

But isn’t the strategy design pattern doing the same thing? The difference be-
tween the visitor pattern and the strategy pattern is more subtle. Here the difference
is primarily one of intent and focus. In both the strategy design pattern and the visi-
tor design pattern, an activity is being passed in as a parameter. The strategy design
pattern is focused on encapsulating an activity that is part of a larger process, so
that different ways of performing that activity can be substituted. The visitor de-
sign pattern is focused on encapsulating an activity that will be performed on all
members of a collection so that completely different activities can be substituted
within a generic method that accesses all of the collection members.

Sec. 1.4 Problems, Algorithms, and Programs 17

1.4 Problems, Algorithms, and Programs

Programmers commonly deal with problems, algorithms, and computer programs.
These are three distinct concepts.

Problems: As your intuition would suggest, a problem is a task to be performed.
It is best thought of in terms of inputs and matching outputs. A problem definition
should not include any constraints on Zow the problem is to be solved. The solution
method should be developed only after the problem is precisely defined and thor-
oughly understood. However, a problem definition should include constraints on
the resources that may be consumed by any acceptable solution. For any problem
to be solved by a computer, there are always such constraints, whether stated or
implied. For example, any computer program may use only the main memory and
disk space available, and it must run in a “reasonable”” amount of time.

Problems can be viewed as functions in the mathematical sense. A function
is a matching between inputs (the domain) and outputs (the range). An input
to a function might be a single value or a collection of information. The values
making up an input are called the parameters of the function. A specific selection
of values for the parameters is called an instance of the problem. For example,
the input parameter to a sorting function might be an array of integers. A particular
array of integers, with a given size and specific values for each position in the array,
would be an instance of the sorting problem. Different instances might generate the
same output. However, any problem instance must always result in the same output
every time the function is computed using that particular input.

This concept of all problems behaving like mathematical functions might not
match your intuition for the behavior of computer programs. You might know of
programs to which you can give the same input value on two separate occasions,
and two different outputs will result. For example, if you type “date” to a typical
UNIX command line prompt, you will get the current date. Naturally the date will
be different on different days, even though the same command is given. However,
there is obviously more to the input for the date program than the command that you
type to run the program. The date program computes a function. In other words,
on any particular day there can only be a single answer returned by a properly
running date program on a completely specified input. For all computer programs,
the output is completely determined by the program’s full set of inputs. Even a
“random number generator” is completely determined by its inputs (although some
random number generating systems appear to get around this by accepting a random
input from a physical process beyond the user’s control). The relationship between
programs and functions is explored further in Section 17.3.

18 Chap. 1 Data Structures and Algorithms

Algorithms: An algorithm is a method or a process followed to solve a problem.
If the problem is viewed as a function, then an algorithm is an implementation for
the function that transforms an input to the corresponding output. A problem can be
solved by many different algorithms. A given algorithm solves only one problem
(i.e., computes a particular function). This book covers many problems, and for
several of these problems I present more than one algorithm. For the important
problem of sorting I present nearly a dozen algorithms!

The advantage of knowing several solutions to a problem is that solution A
might be more efficient than solution B for a specific variation of the problem,
or for a specific class of inputs to the problem, while solution B might be more
efficient than A for another variation or class of inputs. For example, one sorting
algorithm might be the best for sorting a small collection of integers, another might
be the best for sorting a large collection of integers, and a third might be the best
for sorting a collection of variable-length strings.

By definition, an algorithm possesses several properties. Something can only
be called an algorithm to solve a particular problem if it has all of the following
properties.

1. It must be correct. In other words, it must compute the desired function,
converting each input to the correct output. Note that every algorithm im-
plements some function Because every algorithm maps every input to some
output (even if that output is a system crash). At issue here is whether a given
algorithm implements the intended function.

2. It is composed of a series of concrete steps. Concrete means that the action
described by that step is completely understood — and doable — by the
person or machine that must perform the algorithm. Each step must also be
doable in a finite amount of time. Thus, the algorithm gives us a “recipe” for
solving the problem by performing a series of steps, where each such step
is within our capacity to perform. The ability to perform a step can depend
on who or what is intended to execute the recipe. For example, the steps of
a cookie recipe in a cookbook might be considered sufficiently concrete for
instructing a human cook, but not for programming an automated cookie-
making factory.

3. There can be no ambiguity as to which step will be performed next. Often it is
the next step of the algorithm description. Selection (e.g., the 1 £ statements
in Java) is normally a part of any language for describing algorithms. Selec-
tion allows a choice for which step will be performed next, but the selection
process is unambiguous at the time when the choice is made.

Sec. 1.5 Further Reading 19

4. It must be composed of a finite number of steps. If the description for the
algorithm were made up of an infinite number of steps, we could never hope
to write it down, nor implement it as a computer program. Most languages for
describing algorithms (including English and “pseudocode”) provide some
way to perform repeated actions, known as iteration. Examples of iteration
in programming languages include the while and for loop constructs of
Java. Iteration allows for short descriptions, with the number of steps actually
performed controlled by the input.

5. It must terminate. In other words, it may not go into an infinite loop.

Programs: We often think of a computer program as an instance, or concrete
representation, of an algorithm in some programming language. In this book,
nearly all of the algorithms are presented in terms of programs, or parts of pro-
grams. Naturally, there are many programs that are instances of the same alg-
orithm, because any modern computer programming language can be used to im-
plement the same collection of algorithms (although some programming languages
can make life easier for the programmer). To simplify presentation throughout
the remainder of the text, I often use the terms “algorithm” and “program” inter-
changeably, despite the fact that they are really separate concepts. By definition,
an algorithm must provide sufficient detail that it can be converted into a program
when needed.

The requirement that an algorithm must terminate means that not all computer
programs meet the technical definition of an algorithm. Your operating system is
one such program. However, you can think of the various tasks for an operating sys-
tem (each with associated inputs and outputs) as individual problems, each solved
by specific algorithms implemented by a part of the operating system program, and
each one of which terminates once its output is produced.

To summarize: A problem is a function or a mapping of inputs to outputs.
An algorithm is a recipe for solving a problem whose steps are concrete and un-
ambiguous. The algorithm must be correct, of finite length, and must terminate for
all inputs. A program is an instantiation of an algorithm in a computer program-
ming language.

1.5 Further Reading

The first authoritative work on data structures and algorithms was the series of
books The Art of Computer Programming by Donald E. Knuth, with Volumes 1
and 3 being most relevant to the study of data structures [Knu97, Knu98]. A mod-
ern encyclopedic approach to data structures and algorithms that should be easy

20 Chap. 1 Data Structures and Algorithms

to understand once you have mastered this book is Algorithms by Robert Sedge-
wick [Sed03]. For an excellent and highly readable (but more advanced) teaching
introduction to algorithms, their design, and their analysis, see Introduction to Al-
gorithms: A Creative Approach by Udi Manber [Man89]. For an advanced, en-
cyclopedic approach, see Introduction to Algorithms by Cormen, Leiserson, and
Rivest [CLRS01]. Steven S. Skiena’s The Algorithm Design Manual [Ski98] pro-
vides pointers to many implementations for data structures and algorithms that are
available on the Web.

For a gentle introduction to ADTs and program specification, see Abstract Data
Types: Their Specification, Representation, and Use by Thomas, Robinson, and
Emms [TRESS].

The claim that all modern programming languages can implement the same
algorithms (stated more precisely, any function that is computable by one program-
ming language is computable by any programming language with certain standard
capabilities) is a key result from computability theory. For an easy introduction to
this field see James L. Hein, Discrete Structures, Logic, and Computability [Hei03].

Much of computer science is devoted to problem solving. Indeed, this is what
attracts many people to the field. How to Solve It by George P6lya [P6157] is con-
sidered to be the classic work on how to improve your problem-solving abilities. If
you want to be a better student (as well as a better problem solver in general), see
Strategies for Creative Problem Solving by Folger and LeBlanc [FL95], Effective
Problem Solving by Marvin Levine [Lev94], and Problem Solving & Comprehen-
sion by Arthur Whimbey and Jack Lochhead [WL99].

See The Origin of Consciousness in the Breakdown of the Bicameral Mind by
Julian Jaynes [Jay90] for a good discussion on how humans use the concept of
metaphor to handle complexity. More directly related to computer science educa-
tion and programming, see “Cogito, Ergo Sum! Cognitive Processes of Students
Dealing with Data Structures” by Dan Aharoni [Aha00] for a discussion on mov-
ing from programming-context thinking to higher-level (and more design-oriented)
programming-free thinking.

On a more pragmatic level, most people study data structures to write better
programs. If you expect your program to work correctly and efficiently, it must
first be understandable to yourself and your co-workers. Kernighan and Pike’s The
Practice of Programming [KP99] discusses a number of practical issues related to
programming, including good coding and documentation style. For an excellent
(and entertaining!) introduction to the difficulties involved with writing large pro-
grams, read the classic The Mythical Man-Month: Essays on Software Engineering
by Frederick P. Brooks [Bro95].

Sec. 1.6 Exercises 21

If you want to be a successful Java programmer, you need good reference man-
uals close at hand. David Flanagan’s Java in a Nutshell [Fla05] provides a good
reference for those familiar with the basics of the language.

After gaining proficiency in the mechanics of program writing, the next step
is to become proficient in program design. Good design is difficult to learn in any
discipline, and good design for object-oriented software is one of the most difficult
of arts. The novice designer can jump-start the learning process by studying well-
known and well-used design patterns. The classic reference on design patterns
is Design Patterns: Elements of Reusable Object-Oriented Software by Gamma,
Helm, Johnson, and Vlissides [GHIV95] (this is commonly referred to as the “gang
of four” book). Unfortunately, this is an extremely difficult book to understand,
in part because the concepts are inherently difficult. A number of Web sites are
available that discuss design patterns, and which provide study guides for the De-
sign Patterns book. Two other books that discuss object-oriented software design
are Object-Oriented Software Design and Construction with C++ by Dennis Ka-
fura [Kaf98], and Object-Oriented Design Heuristics by Arthur J. Riel [Rie96].

1.6 Exercises

The exercises for this chapter are different from those in the rest of the book. Most
of these exercises are answered in the following chapters. However, you should
not look up the answers in other parts of the book. These exercises are intended to
make you think about some of the issues to be covered later on. Answer them to
the best of your ability with your current knowledge.

1.1 Think of a program you have used that is unacceptably slow. Identify the spe-
cific operations that make the program slow. Identify other basic operations
that the program performs quickly enough.

1.2 Most programming languages have a built-in integer data type. Normally
this representation has a fixed size, thus placing a limit on how large a value
can be stored in an integer variable. Describe a representation for integers
that has no size restriction (other than the limits of the computer’s available
main memory), and thus no practical limit on how large an integer can be
stored. Briefly show how your representation can be used to implement the
operations of addition, multiplication, and exponentiation.

1.3 Define an ADT for character strings. Your ADT should consist of typical
functions that can be performed on strings, with each function defined in

22

1.4

1.5

1.6

1.7

1.8

1.9

1.10
1.11

Chap. 1 Data Structures and Algorithms

terms of its input and output. Then define two different physical representa-
tions for strings.

Define an ADT for a list of integers. First, decide what functionality your
ADT should provide. Example 1.4 should give you some ideas. Then, spec-
ify your ADT in Java in the form of an abstract class declaration, showing
the functions, their parameters, and their return types.

Briefly describe how integer variables are typically represented on a com-
puter. (Look up one’s complement and two’s complement arithmetic in an
introductory computer science textbook if you are not familiar with these.)
Why does this representation for integers qualify as a data structure as de-
fined in Section 1.2?

Define an ADT for a two-dimensional array of integers. Specify precisely
the basic operations that can be performed on such arrays. Next, imagine an
application that stores an array with 1000 rows and 1000 columns, where less
than 10,000 of the array values are non-zero. Describe two different imple-
mentations for such arrays that would be more space efficient than a standard
two-dimensional array implementation requiring one million positions.

You have been assigned to implement a sorting program. The goal is to make
this program general purpose, in that you don’t want to define in advance
what record or key types are used. Describe ways to generalize a simple
sorting algorithm (such as insertion sort, or any other sort you are familiar
with) to support this generalization.

You have been assigned to implement a simple seqential search on an array.
The problem is that you want the search to be as general as possible. This
means that you need to support arbitrary record and key types. Describe
ways to generalize the search function to support this goal. Consider the
possibility that the function will be used multiple times in the same program,
on differing record types. Consider the possibility that the function will need
to be used on different keys (possibly with the same or different types) of the
same record. For example, a student data record might be searched by zip
code, by name, by salary, or by GPA.

Does every problem have an algorithm?

Does every algorithm have a Java program?

Consider the design for a spelling checker program meant to run on a home
computer. The spelling checker should be able to handle quickly a document
of less than twenty pages. Assume that the spelling checker comes with a
dictionary of about 20,000 words. What primitive operations must be imple-
mented on the dictionary, and what is a reasonable time constraint for each
operation?

Sec. 1.6 Exercises 23

1.12

1.13

1.14

1.15

1.16

1.17

Imagine that you have been hired to design a database service containing
information about cities and towns in the United States, as described in Ex-
ample 1.2. Suggest two possible implementations for the database.

Imagine that you are given an array of records that is sorted with respect to
some key field contained in each record. Give two different algorithms for
searching the array to find the record with a specified key value. Which one
do you consider “better” and why?

How would you go about comparing two proposed algorithms for sorting an
array of integers? In particular,

(a) What would be appropriate measures of cost to use as a basis for com-
paring the two sorting algorithms?

(b) What tests or analysis would you conduct to determine how the two
algorithms perform under these cost measures?

A common problem for compilers and text editors is to determine if the
parentheses (or other brackets) in a string are balanced and properly nested.
For example, the string “((())())()” contains properly nested pairs of paren-
theses, but the string “)()(” does not; and the string “())” does not contain
properly matching parentheses.

(a) Give an algorithm that returns t rue if a string contains properly nested
and balanced parentheses, and false if otherwise. Hint: At no time
while scanning a legal string from left to right will you have encoun-
tered more right parentheses than left parentheses.

(b) Give an algorithm that returns the position in the string of the first of-
fending parenthesis if the string is not properly nested and balanced.
That is, if an excess right parenthesis is found, return its position; if
there are too many left parentheses, return the position of the first ex-
cess left parenthesis. Return —1 if the string is properly balanced and
nested.

A graph consists of a set of objects (called vertices) and a set of edges, where
each edge connects two vertices. Any given pair of vertices can be connected
by only one edge. Describe at least two different ways to represent the con-
nections defined by the vertices and edges of a graph.

Imagine that you are a shipping clerk for a large company. You have just
been handed about 1000 invoices, each of which is a single sheet of paper
with a large number in the upper right corner. The invoices must be sorted by
this number, in order from lowest to highest. Write down as many different
approaches to sorting the invoices as you can think of.

24

1.18

1.19

1.20

Chap. 1 Data Structures and Algorithms

Imagine that you are a programmer who must write a function to sort an
array of about 1000 integers from lowest value to highest value. Write down
at least five approaches to sorting the array. Do not write algorithms in Java
or pseudocode. Just write a sentence or two for each approach to describe
how it would work.

Think of an algorithm to find the maximum value in an (unsorted) array.
Now, think of an algorithm to find the second largest value in the array.
Which is harder to implement? Which takes more time to run (as measured
by the number of comparisons performed)? Now, think of an algorithm to
find the third largest value. Finally, think of an algorithm to find the middle
value. Which is the most difficult of these problems to solve?

An unsorted list of integers allows for constant-time insert simply by adding
a new integer at the end of the list. Unfortunately, searching for the integer
with key value X requires a sequential search through the unsorted list until
you find X, which on average requires looking at half the list. On the other
hand, a sorted array-based list of n integers can be searched in log n time by
using a binary search. Unfortunately, inserting a new integer requires a lot of
time because many integers might be shifted in the array if we want to keep
it sorted. How might data be organized to support both insertion and search
in log n time?

